Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High doping incorporation on (311)B InP/InGaAs by metalorganic chemical vapor deposition and its application to tunnel junction fabrication

Identifieur interne : 00A495 ( Main/Repository ); précédent : 00A494; suivant : 00A496

High doping incorporation on (311)B InP/InGaAs by metalorganic chemical vapor deposition and its application to tunnel junction fabrication

Auteurs : RBID : Pascal:04-0184221

Descripteurs français

English descriptors

Abstract

We investigated the doping characteristics of InP/InGaAs on the (311)B plane by metalorganic chemical vapor deposition using metalorganic group-V regents. For both n-type Si doping and p-type Zn doping, we found that dopant incorporation is higher on the (311)B plane than the (100) plane. Applying this result, we grew a tunnel junction on (311)B InP substrates at a constant growth temperature. The junction showed good current-voltage characteristics and is promising for device applications. © 2004 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0184221

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High doping incorporation on (311)B InP/InGaAs by metalorganic chemical vapor deposition and its application to tunnel junction fabrication</title>
<author>
<name sortKey="Okuno, Yae L" uniqKey="Okuno Y">Yae L. Okuno</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Denbaars, Steven P" uniqKey="Denbaars S">Steven P. Denbaars</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bowers, John E" uniqKey="Bowers J">John E. Bowers</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, University of California, Santa Barbara</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0184221</idno>
<date when="2004-05-03">2004-05-03</date>
<idno type="stanalyst">PASCAL 04-0184221 AIP</idno>
<idno type="RBID">Pascal:04-0184221</idno>
<idno type="wicri:Area/Main/Corpus">00B986</idno>
<idno type="wicri:Area/Main/Repository">00A495</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Doping profiles</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Heavily doped semiconductors</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>MOCVD</term>
<term>Semiconductor doping</term>
<term>Semiconductor growth</term>
<term>Semiconductor thin films</term>
<term>Silicon</term>
<term>Zinc</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>6172V</term>
<term>8115G</term>
<term>6172S</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Semiconducteur fortement dopé</term>
<term>Gallium arséniure</term>
<term>Silicium</term>
<term>Zinc</term>
<term>Dopage semiconducteur</term>
<term>Semiconducteur III-V</term>
<term>Méthode MOCVD</term>
<term>Profil dopage</term>
<term>Croissance semiconducteur</term>
<term>Couche mince semiconductrice</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Zinc</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We investigated the doping characteristics of InP/InGaAs on the (311)B plane by metalorganic chemical vapor deposition using metalorganic group-V regents. For both n-type Si doping and p-type Zn doping, we found that dopant incorporation is higher on the (311)B plane than the (100) plane. Applying this result, we grew a tunnel junction on (311)B InP substrates at a constant growth temperature. The junction showed good current-voltage characteristics and is promising for device applications. © 2004 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>84</s2>
</fA05>
<fA06>
<s2>18</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High doping incorporation on (311)B InP/InGaAs by metalorganic chemical vapor deposition and its application to tunnel junction fabrication</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OKUNO (Yae L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DENBAARS (Steven P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BOWERS (John E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>3483-3485</s1>
</fA20>
<fA21>
<s1>2004-05-03</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0184221</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We investigated the doping characteristics of InP/InGaAs on the (311)B plane by metalorganic chemical vapor deposition using metalorganic group-V regents. For both n-type Si doping and p-type Zn doping, we found that dopant incorporation is higher on the (311)B plane than the (100) plane. Applying this result, we grew a tunnel junction on (311)B InP substrates at a constant growth temperature. The junction showed good current-voltage characteristics and is promising for device applications. © 2004 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A72V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A72S</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>6172V</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8115G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>6172S</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Semiconducteur fortement dopé</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Heavily doped semiconductors</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Zinc</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Zinc</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dopage semiconducteur</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Semiconductor doping</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>MOCVD</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Profil dopage</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Doping profiles</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Croissance semiconducteur</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Semiconductor growth</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couche mince semiconductrice</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Semiconductor thin films</s0>
</fC03>
<fN21>
<s1>124</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0417M000135</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A495 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00A495 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0184221
   |texte=   High doping incorporation on (311)B InP/InGaAs by metalorganic chemical vapor deposition and its application to tunnel junction fabrication
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024